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Abstract
We show how some integrable third-order difference equations recently given
in the literature are related to one another by the process of interchanging
parameters and integrals. Using the same process, we then create a
21-parameter family of integrable third-order difference equations that contains
the previous examples as special cases. Our methodology illustrates that the
combination of finding 2-integrals (i.e. integrals of the second iterate of the
map), exploiting linear parameter dependence and using the interchange
process provides a powerful way to relate and create higher-dimensional
discrete integrable systems.

PACS number: 02.30.Ik

1. Introduction

Integrable systems in general are studied for various reasons: for their intrinsic physical and
mathematical interest, as a starting point for a perturbative approach, as tests for various
numerical methods. Discrete integrable systems in particular are studied because of their
fundamental mathematical nature and their applications to various areas of physics (including
statistical mechanics and quantum gravity) and because sometimes they are discrete analogues
of integrable systems in classical mechanics or solid state physics [4, 14, 16–18, 23].

This letter is concerned with integrable mappings, in particular those that can be written
as difference equations. Integrable mappings of the plane were first introduced by McMillan
[13], with some precursors in the work of Lyness [11]. The McMillan and Lyness maps are
generalized by the so-called QRT map [17, 18], which contains a large number of parameters,
but is still a map of R

2 (or a second-order difference equation). In recent years, some extensions
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of integrable maps or difference equations to third (and higher) order have begun to appear
[1, 2, 6–9, 14, 16, 22], but a comprehensive approach has been elusive.

Building on recent advances, this letter represents a first attempt at a more comprehensive
approach to third-order integrable difference equations. In particular, it uses the technique
of [19] extended to the concept of 2-integrals [5] to create new integrable maps that, in their
most general form, are alternating [15]. Ultimately, we derive the fractional-linear third-order
difference equation L̄ of equation (52), which contains 21 parameters (6 of which alternate
from one iterate to another). Its integrability derives from the possession of two integrals (42)
and a measure-preservation property (62).

2. Interchange of 2-integrals and parameters to relate three existing integrable
third-order difference equations

The following third-order difference equation was derived in [6]:

L : xn+3 = 1

xn

p3xn+1xn+2 + p4(xn+1 + xn+2) + p5

p2xn+1xn+2 + p1(xn+1 + xn+2) + p3
, (1)

where p1, p2, . . . , p5 are arbitrary parameters. It has two integrals, as shown in [6], and is
also (anti) measure preserving since

det dL = ∂xn+3

∂xn

= − m(xn, xn+1, xn+2)

m(xn+1, xn+2, xn+3)
(2)

with density m(x, y, z) = (xyz)−1. Hence, it is integrable [5]. It turns out that underlying the
existence of the two integrals are two 2-integrals, I1 and I2, given by

I1(xn, xn+1, xn+2) = p1xnxn+1xn+2 + (p3xn+1 + p4)(xn + xn+2) + p4xn+1 + p5

xnxn+2

I2(xn, xn+1, xn+2) = (p2xn+1 + p1)xnxn+2 + (p1xn+1 + p3)(xn + xn+2) + p4

xn+1
.

(3)

It can be verified that

I1(n + 1) := I1(xn+1, xn+2, xn+3) = I2(xn, xn+1, xn+2) =: I2(n), (4)
I2(n + 1) := I2(xn+1, xn+2, xn+3) = I1(xn, xn+1, xn+2) =: I1(n), (5)

whence

I1(n + 2) = I1(n) and I2(n + 2) = I2(n). (6)

The difference equation L has a time-reversal symmetry [20], being conjugate to its inverse
via the involution

G : (xn, xn+1, xn+2) → (xn+2, xn+1, xn). (7)

A systematic method for finding third-order difference equations that possess 2-integrals,
based upon assuming that the equations possess such time-reversal symmetry, will be detailed
elsewhere [21]. For the moment, we note that the existence of the 2-integrals I1 and I2 is a
more fundamental invariance property of L that implies the existence of the integrals. The
2-integrals are also substantially more compact building blocks than the integrals. Specifically,
we find that the integrals H1 and H2 of L given in [6] can be expressed as4

4 In [6], L is equation (Y1) of the appendix. We are grateful to Professor R Hirota and his collaborators for providing
us with H1 and H2. During the final preparation of our manuscript, [12] appeared in which the 2-integrals I1 and I2
for (Y1) are also found, as are the 2-integrals for other integrable cases of [6]. This allows the authors of [12] to give
certain reductions of the third-order equations of [6] to pairs of second-order equations.
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H1 = I1 + I2 − p3H2

p4
(8)

H2 = I1I2 − (
4p1p4 + 2p2

3 + p2p5
)

p1p4
. (9)

In [19], a process was described whereby new maps with integrals could be obtained from
an original map with integrals. This process works by interchanging parameters with (the
values of) integrals in the original map. It can be generalized to cover the case of k-integrals
depending on parameters, as we now illustrate (a complete description of this will be given in
[21]).

In particular, we can use the two 2-integrals to solve for any two parameters present in
them. This is facilitated by the fact that the dependence of I1 and I2 upon their five parameters
is linear (in stark contrast to the case of the integrals H1 and H2). Consider the equations5

I1(n) = −α(n) I2(n) = −β(n), (10)

where from (4)–(6)

α(n + 1) = β(n) and β(n + 1) = α(n) ⇒ α(n + 2) = α(n) and β(n + 2) = β(n).

(11)

Equations (10) define a linear system in the parameters p1, p2, . . . , p5. Arbitrarily
distinguishing two of these, calling them K1 and K2, we can write

J (n)

(
K1

K2

)
= −

(
α(n) + Ĩ 1(n)

β(n) + Ĩ 2(n)

)
. (12)

Here,

J (n) :=
(

∂I1(n)

∂K1

∂I1(n)

∂K2

∂I2(n)

∂K1

∂I2(n)

∂K2

)
(13)

and Ĩ i (n), i = 1, 2 are the parts of Ii(n) not involving K1 or K2. Solving (12) for K1 and K2,
we obtain

K1 =: k1(xn, xn+1, xn+2, p̃, α(n), β(n)), (14)

K2 =: k2(xn, xn+1, xn+2, p̃, α(n), β(n)), (15)

where p̃ represent the parameters not chosen as either K1 or K2. Similarly, the equations
I1(n + 1) = α(n + 1) and I2(n + 1) = β(n + 1) lead to the system

J (n + 1)

(
K1

K2

)
= −

(
β(n) + Ĩ 1(n + 1)

α(n) + Ĩ 2(n + 1)

)
, (16)

noting the use of (11) to update the parameters on the right-hand side. Since K1 and K2 must
simultaneously satisfy both (12) and (16), we conclude that the difference equation L̄ formed
from L by replacing, respectively, K1 and K2 with k1 and k2 has the integrals k1 and k2 (i.e.
they equal their upshift). The map L̄ and k1 and k2 now contain the n-dependent parameters
α(n) and β(n) satisfying from (11)

α(n) = α0 + (−1)nα1, β(n) = α0 − (−1)nα1 (17)

where α0 and α1 are constants.

5 The negative sign is introduced simply for aesthetic reasons.
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Figure 1. Summary of relations between the difference equations L,L1 and L2 established by
interchanging parameters and 2-integrals, as described in the text. All interchanges can be inverted
to go in the other direction.

In summary, the map L containing constant parameters and possessing two 2-integrals
becomes the map L̄ containing a 2-cycle of parameters and possessing two integrals. This
interchange can be encoded as

{(I1, I2);K1,K2} → {k1, k2; (α, β)}, (18)

where the semicolon in each bracket separates integrals to its left from parameters on its right,
and the round brackets represent a 2-cycle in integrals or in parameters (in two dimensions,
alternating versions of the QRT map with one integral have been recently studied in [15]).

To exemplify the above process, first consider solving (3) and (12) for K1 = p5 and
K2 = p2. This yields

k1 = −α(n)xnxn+2 − p1xnxn+1xn+2 − p3xn+1(xn + xn+2) − p4(xn + xn+1 + xn+2),

k2 = −p1(xnxn+1 + xnxn+2 + xn+1xn+2) + p3(xn + xn+2) + p4 + β(n)xn+1

xnxn+1xn+2
,

(19)

where α(n) and β(n) are given by (17). With these replacements, L̄ becomes

L1 : xn+3 = xn

p4 + p3xn+1 + α(n)xn+2 + p1xn+1xn+2

p4 + p3xn+2 + β(n)xn+1 + p1xn+1xn+2
. (20)

The third-order difference equation L1 is a generalization of the one studied in [22]. It is
measure preserving with density m1(xn, xn+1, xn+2) = (xnxn+1xn+2)

−1.
Another possibility is constructing (12) from (3) with K1 = p5 and K2 = p4. This yields

k1 = −α(n)xnxn+2 − p1xnxn+1xn+2 − p3xn+1(xn + xn+2) − (xn + xn+1 + xn+2)k2,

k2 = −β(n)xn+1 − p2xnxn+1xn+2 − p1(xnxn+2 + xnxn+1 + xn+1xn+2) − p3(xn + xn+2).
(21)

With these replacements, L̄ becomes

L2 : xn+3 = xn − p3(xn+1 − xn+2) − β(n)xn+1 + α(n)xn+2

p3 + p1(xn+1 + xn+2) + p2xn+1xn+2
. (22)

The equation L2 is volume preserving and represents a generalization, with alternating
parameters, of equation (12) of [8] (in particular, the latter is obtained by taking p1 = 0
and α(n) = β(n) = α0 in L2). Note that both integrals of L2 are now polynomials. It is
also the case that L2 can be obtained directly from L1, an application of the interchange of
parameters and integrals as originally advanced in [19]. This is achieved by solving the second
equation of (19) for p4 and renaming the value of k2 there by p2. Replacing for p4 in L1 then
yields L2. It is also seen that the expression obtained by solving for p4 is precisely the integral
k2 in (21), whereas k1 of (21) follows from k1 of (19) with p4 also replaced. Summarizing,
the three integrable difference equations L,L1 and L2 can all be obtained from one another
via the interchange process. In other words, any two can be generated from the third. This is
highlighted schematically in figure 1.
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3. Reparametrization and interchange of 2-integrals and parameters to create a new
class of integrable third-order difference equations

In fuller generality, analogous to the case of integrals described in [19], we can reparametrize
all parameters in L and its two 2-integrals, in terms of two parameters K1 and K2. That is, we
let

pi → p0
i + p1

i K1 + p2
i K2, i = 1, . . . , 5, (23)

i.e. each parameter pi is ‘replaced’ by three parameters p0
i , p

1
i and p2

i (note that the superscripts
here do not denote powers). Similarly, we can reparametrize

I1 + α → (
I 0

1 + I 1
1 K1 + I 2

1 K2
)

+ (α0 + α1K1 + α2K2), (24)

I2 + β → (
I 0

2 + I 1
2 K1 + I 2

2 K2
)

+ (β0 + β1K1 + β2K2). (25)

In (24), I 0
1 is the 2-integral I1 of L with pi → p0

i and

αj (n + 1) = βj (n) and βj (n + 1) = αj (n), j = 0, 1, 2. (26)

It is seen that (24) and (25) incorporate the pi reparametrization in terms of K1 and K2 as
well as the ‘expansion’ of α and β, respectively, satisfying (26). This extra reparametrization
is simply a reflection of the fact that the addition of an alternating parameter, or a linear
combination of alternating parameters, to a 2-integral still gives a 2-integral of the map. At
this point, the expanded pi, α and β, together with K1 and K2, should all be considered
parameters on an equal footing. Substituting these reparametrizations into (1) and (3), the
linear dependence of L and of I1 and I2 on the parameters means that we can achieve the
following trivial reformulation of the properties of L: the third-order difference equation

L̂ : xn+3 = (N0, N1, N2) · (1,K1,K2)

(D0,D1,D2) · (1,K1,K2)
= N · K

D · K
(27)

possesses the 2-integrals

Î 1 = (
I 0

1 + α0, I 1
1 + α1, I 2

1 + α2
) · (1,K1,K2) = I1 ·K (28)

Î 2 = (
I 0

2 + β0, I 1
2 + β1, I 2

2 + β2
) · (1,K1,K2) = I2 · K. (29)

In (27), the vector N := (N0, N1, N2), where N0 is the numerator on the rhs of L with pi → p0
i

etc, and similarly for D, the corresponding vector built from copies of the denominator. The
vector K := (1,K1,K2). For brevity, we define I1 = (I10, I11, I12) and similarly for I2,
where

I1j := I
j

1 + αj , I2j := I
j

2 + βj , j = 0, 1, 2. (30)

Now, as in the similar philosophy for the case of integrals as discussed in [19], we now
take K1 and K2 as distinguished parameters chosen to satisfy Î 1(n) = 0 and Î 2(n) = 0
respectively. These two equations, the generalizations of (10), define a linear system (12) for

K1 and K2 where now J = (
I11 I12
I21 I22

)
and the right-hand side of (12) is now −(

I10
I20

)
.6 The ensuing

discussion concerning generating a new difference equation by replacing K1 and K2 applies,
this new difference equation preserving integrals k1 and k2 given by solving, respectively, for
K1 and K2. The reparametrizations we used above will mean that this new difference equation
is much more general than the examples discussed in section 2 as we have tripled the number
of parameters. Ultimately, we will derive L̄ of equation (52), which contains 21 arbitrary

6 One sees that e.g. α0 and I 0
1 now play the role of α(n) and Ĩ 1(n), respectively, in (12).
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parameters (6 of which alternate from one iterate to another). Nevertheless, the examples in
section 2 will be special cases of our final result L̄, for example, L1 of (20) corresponds to taking{
p1

i = p2
i = 0, i = 1, 3, 4;p1

5 = p2
2 = 1;p0

5 = p2
5 = p0

2 = p1
2 = 0;αi = βi = 0, i = 1, 2

}
.

Moreover, the original equation L of (1) corresponds to taking
{
p1

i = p2
i = 0, i = 1, . . . , 5

}
so that no replacement of parameters in L actually occurs (in this case, J = (

α1 α2

β1 β2

)
so that the

integrals k1 and k2 are, in general, certain L-invariant linear combinations of the 2-integrals I1

and I2). This further highlights the benefits of ‘expanding’ α and β in (24)–(26) to include αi

and βi for i = 1, 2, as it allows the final result to include the starting point as a special case.
We proceed to the derivation of L̄ of equation (52). From (28)–(29), we see that the

solutions of Î 1(n) = 0 and Î 2(n) = 0 can be expressed vectorially as

k := (1, k1, k2) =
∣∣∣∣I11 I12

I21 I22

∣∣∣∣
−1

(I1 × I2), (31)

and equivalently, by Cramer’s rule, as

k1 = −

∣∣∣I10 I12

I20 I22

∣∣∣∣∣∣I11 I12

I21 I22

∣∣∣ , k2 = −

∣∣∣I11 I10

I21 I20

∣∣∣∣∣∣I11 I12

I21 I22

∣∣∣ . (32)

The third-order difference equation L̄ preserving these integrals follows from (27) with (31),
i.e.

L̄ : xn+3 = N · I1 × I2

D · I1 × I2
, (33)

equivalently,

L̄ : xn+3 =

∣∣∣∣∣
N0 N1 N2

I10 I11 I12

I20 I21 I22

∣∣∣∣∣∣∣∣∣∣
D0 D1 D2

I10 I11 I12

I20 I21 I22

∣∣∣∣∣
. (34)

Note that equations (32) and (34) actually hold more generally than those derived from
just (1). That is, suppose we are given an original third-order rational difference equation
L : xn+3 = N

D
, where N and D are general polynomial expressions in {xn, xn+1, xn+2} which

have linear dependence on parameters. If, additionally, there are two 2-integrals I1 and I2 with
linear dependence on parameters, (34) describes a new third-order rational difference equation
preserving the integrals k1 and k2 given by (32) that can be obtained from the original by the
processes of reparametrization and replacement.

Turning back to the specific starting points (1) and (3), we now give the explicit details
of (31) and (34) in this case. The calculation of k1, k2 and L̄ both involve the calculation of
determinants whose entries are bilinear or trilinear forms, so it is useful to have a formalism
for the products of such forms.

For i � 1, define the (i + 1)-dimensional vector

xi :=




xi

xi−1

...

1


 . (35)
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With Ai as an (i + 1) × (i + 1) matrix, xi · Aiz
i defines a form of degree i in x and z.

The multiplication of two forms can be achieved using the Kronecker product [3] (or tensor
product) ⊗:

(xi · Aiz
i )(xj · Ajz

j ) = (xi ⊗ xj ) · (Ai ⊗ Aj)(z
i ⊗ zj ). (36)

Note that (xi ⊗ xj ) is (i + 1)(j + 1)-dimensional and the matrix Ai ⊗ Aj is (i + 1)(j + 1) ×
(i + 1)(j + 1). Here, we wish to use a certain contraction of the Kronecker product of Ai and
Aj which we denote by �. We define Ai � Aj in the following way:

(xi · Aiz
i )(xj · Ajz

j ) = (xi ⊗ xj ) · (Ai ⊗ Aj)(z
i ⊗ zj ) =: xi+j · (Ai � Aj)z

i+j . (37)

This uniquely defines Ai � Aj as a (i + j + 1) × (i + j + 1) matrix. Its entries come from
certain sums of the entries in appropriate rows and columns of Ai ⊗ Aj .7 Note that Ai � Aj

is a commutative operation, unlike Ai ⊗ Aj . Nevertheless, many properties of the product �
we use below can be inferred from those of ⊗.

The 2-integral I1 + α is a trilinear form in xn, xn+1 and xn+2. Two ways in which it can be
written are

I1 + α = x1
n · A1x

1
n+2

xnxn+2
= x1

n+1 · B1x
1
n+2

xnxn+2
, (38)

where x1
n = (

xn

1

)
etc, following the notation of (35), and

A1 :=
(

p1xn+1 + α p3xn+1 + p4

p3xn+1 + p4 p4xn+1 + p5

)
, B1 :=

(
p1xn + p3 p3xn + p4

αxn + p4 p4xn + p5

)
. (39)

Similarly,

I2 + β = x1
n · A2x

1
n+2

xn+1
= x1

n+1 · B2x
1
n+2

xn+1
, (40)

with

A2 :=
(

p2xn+1 + p1 p1xn+1 + p3

p1xn+1 + p3 βxn+1 + p4

)
, B2 :=

(
p2xn + p1 p1xn + β

p1xn + p3 p3xn + p4

)
. (41)

The denominators in (38) and (40) are independent of parameters, and hence will cancel in
the rational expressions for k1 and k2 in (32). Consequently, the entries in the determinants in
the latter can be taken to be the bilinear forms in the numerators of the first expressions in (38)
and (40), with the matrix Ai, i = 1, 2, replaced by e.g. A0

i in Ii0 so as to depend on p0
i etc.

We obtain that the integrals k1 and k2 are ratios of symmetric triquadratic forms (in
particular, biquadratic in xn and xn+2), which, using the product �, we can write as

k1 = −
x2

n ·
∣∣∣∣A0

1 A2
1

A0
2 A2

2

∣∣∣∣
�

x2
n+2

x2
n ·

∣∣∣∣A1
1 A2

1

A1
2 A2

2

∣∣∣∣
�

x2
n+2

= −x2
n · (

M
0,2
2 x2

n+1 + M
0,2
1 xn+1 + M

0,2
0

)
x2

n+2

x2
n · (

M
1,2
2 x2

n+1 + M
1,2
1 xn+1 + M

1,2
0

)
x2

n+2

(42)

k2 = −
x2

n ·
∣∣∣∣A1

1 A0
1

A1
2 A0

2

∣∣∣∣
�

x2
n+2

x2
n ·

∣∣∣∣A1
1 A2

1

A1
2 A2

2

∣∣∣∣
�

x2
n+2

= −x2
n · (

M
1,0
2 x2

n+1 + M
1,0
1 xn+1 + M

1,0
0

)
x2

n+2

x2
n · (

M
1,2
2 x2

n+1 + M
1,2
1 xn+1 + M

1,2
0

)
x2

n+2

. (42)

7 For example, when i = 2, j = 1, the 4 × 4 matrix Ai � Aj is derived from the 6 × 6 matrix Ai ⊗ Aj in the
following way: (i) simultaneously merge, under addition, the second and third rows of the latter into one row and
the fourth and fifth rows into another row, yielding an intermediary 4 × 6 matrix; (ii) convert the 4 × 6 matrix into
A2 �A1 by repeating (i) on the corresponding columns.
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Here, | · · · |� refers to a determinant with respect to the matrix product �. This matrix
determinant, and the linear dependence of (39) and (41) on the parameters, induces a (2 × 2)-
determinantal structure in the parameters of each entry of the resulting symmetric 3 × 3
matrices defining each biquadratic form. For ease of notation, we define e.g.

311,2 :=
∣∣∣∣p1

3 p2
3

p1
1 p2

1

∣∣∣∣ , 1β0,2 :=
∣∣∣∣p0

1 p2
1

β0 β2

∣∣∣∣ , (43)

and the symmetric matrices M
k,l
i take the form

M
k,l
2 =


12 32 31

� 42 + 1β + 2 · 31 3β + 41
� � 4β




k,l

M
k,l
1 =


α2 α1 + 42 41

� αβ + 2 · 41 + 52 4β + 51
� � 5β




k,l

M
k,l
0 =


α1 α3 + 41 43

� 51 + 2 · 43 + α4 53
� � 54




k,l

where the superscripts for the matrices indicate that they should be applied to each entry so as
to create determinants like (43) and � entries follow from the symmetry of the matrices (note
also 2 · 31k,l = 31k,l + 31k,l etc). For notational convenience, the n-dependence of αj and βj

in the matrices M
k,l
i is suppressed, but (26) should be used in the upshifts of k1 and k2.

Now we give the details of L̄ of (34). We write the numerator N and denominator D of L
of (1), both bilinear forms in xn+1 and xn+2, as

N = x1
n+1 · BNx1

n+2, D = x1
n+1 · (xnBD)x1

n+2 (44)

with

BN :=
(

p3 p4

p4 p5

)
, BD :=

(
p2 p1

p1 p3

)
. (45)

Noting the second expressions for I1 + α and I2 + β in (38) and (40) respectively, it follows
from (34) that

L̄ : xn+3 =
x3

n+1 ·
∣∣∣∣∣∣
B0

N B1
N B2

N

B0
1 B1

1 B2
1

B0
2 B1

2 B2
2

∣∣∣∣∣∣
�

x3
n+2

x3
n+1 ·

∣∣∣∣∣∣
xnB

0
D xnB

1
D xnB

2
D

B0
1 B1

1 B2
1

B0
2 B1

2 B2
2

∣∣∣∣∣∣
�

x3
n+2

=:

x3
n+1 ·

∣∣∣∣∣∣
BN

B1

B2

∣∣∣∣∣∣
�

x3
n+2

x3
n+1 ·

∣∣∣∣∣∣
xnBD

B1

B2

∣∣∣∣∣∣
�

x3
n+2

(46)

where BN represents the row vector in the matrix determinant. The numerator and
denominator of L̄ are bicubic expressions in xn+1 and xn+2, respectively. We now show
that they can be taken as linear in xn via a cancellation. Note the decompositions

B1 := xnB11 + BN, (47)
B2 := xnBD + Bt̃

11, (48)

where

B11 :=
(

p1 p3

α p4

)
; (49)
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the superscript t denotes transpose and the superscript ˜ means the exchange α ↔ β. These
allow simplifications in the matrix determinants of (46):

∣∣∣∣∣∣
BN

B1

B2

∣∣∣∣∣∣
�

=
∣∣∣∣∣∣

BN

xnB11 + BN

xnBD + B t̃
11

∣∣∣∣∣∣
�

=
∣∣∣∣∣∣

BN

xnB11

xnBD + B t̃
11

∣∣∣∣∣∣
�

= x2
n

∣∣∣∣∣∣
BN

B11

BD

∣∣∣∣∣∣
�

+ xn

∣∣∣∣∣∣
BN

B11

B t̃
11

∣∣∣∣∣∣
�

, (50)

∣∣∣∣∣∣
xnBD

B1

B2

∣∣∣∣∣∣
�

=
∣∣∣∣∣∣

xnBD

xnB11 + BN

xnBD + B t̃
11

∣∣∣∣∣∣
�

=
∣∣∣∣∣∣

xnBD

xnB11 + BN

B t̃
11

∣∣∣∣∣∣
�

= x2
n

∣∣∣∣∣∣
BD

B11

B t̃
11

∣∣∣∣∣∣
�

+ xn

∣∣∣∣∣∣
BD

BN

B t̃
11

∣∣∣∣∣∣
�

, (51)

which can be viewed as the result of row operations on the matrix determinant8. This gives
the fractional-linear form

L̄ : xn+3 = f1(xn+1, xn+2)xn + f2(xn+1, xn+2)

f3(xn+1, xn+2)xn + f̃ 1(xn+2, xn+1)
, (52)

with the functions fi bicubic in their arguments:

f1(xn+1, xn+2) = x3
n+1 ·

∣∣∣∣∣∣
BN

B11

BD

∣∣∣∣∣∣
�

x3
n+2 = x3

n+1 · H1x
3
n+2, (53)

f2(xn+1, xn+2) = x3
n+1 ·

∣∣∣∣∣∣
BN

B11

B t̃
11

∣∣∣∣∣∣
�

x3
n+2 = x3

n+1 · H2x
3
n+2, (54)

f3(xn+1, xn+2) = x3
n+1 ·

∣∣∣∣∣∣
BD

B11

B t̃
11

∣∣∣∣∣∣
�

x3
n+2 = x3

n+1 · H3x
3
n+2. (55)

The function f̃1 is f1 with the exchange αj ↔ βj . This follows since the term independent
of xn on the denominator of L̄ is, from (51),

x3
n+1 ·

∣∣∣∣∣∣
BD

BN

B t̃
11

∣∣∣∣∣∣
�

x3
n+2 = x3

n+2 ·
∣∣∣∣∣∣
BD

BN

B t̃
11

∣∣∣∣∣∣
t

�

x3
n+1 = x3

n+2 ·
∣∣∣∣∣∣
BD

BN

B˜
11

∣∣∣∣∣∣
�

x3
n+1 = f̃ 1(xn+2, xn+1), (56)

noting that BD and BN are symmetric and independent of α, β, and that the transpose distributes
over the product �. Similar manipulations show that the 4 × 4 matrices H2 and H3 satisfy a
type of skew symmetry

Ht̃
j = −Hj, j = 2, 3. (57)

The entries of H1,H2 and H3 can be expressed in terms of (3 × 3) determinants in the
parameters. Define e.g.

123 :=
∣∣∣∣∣∣
p0

1 p1
1 p2

1

p0
2 p1

2 p2
2

p0
3 p1

3 p2
3

∣∣∣∣∣∣ , 34β :=
∣∣∣∣∣∣
p0

3 p1
3 p2

3

p0
4 p1

4 p2
4

β0 β1 β2

∣∣∣∣∣∣ , (58)

8 The rigorous justification for the validity of such operations can be inferred from properties of the Kronecker
product ⊗.
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showing that the triple indices are equal to their cyclic permutations. Then,

H1 =




123 124 243 143
124 + 23α 24α + 13α + 125 253 + 14α 153
13α + 24α 134 + 25α + 2 · 14α 254 + 15α + 34α 154

14α 15α + 34α 154 + 35α 354


 , (59)

H2 =




0 31β 143 + 41β 43β

� 14α + 41β + 3αβ 153 + 51β + 4αβ 53β

� � 5αβ 345 + 54β

� � � 0


 (60)

and

H3 =




0 123 + 21β 23β 13β

� 2αβ 234 + 24β + 1αβ 134 + 14β

� � 41α + 14β + 3αβ 34β

� � � 0


 , (61)

where property (57) can be used to complete the below-diagonal entries of H2 and H3, e.g.
(H2)32 = −(153 + 51α + 4βα) = 135 + 15α + 4αβ (note that the diagonal entries of H2 and
H3 change sign under interchange of α and β).

Finally, we point out that L̄ of (52) satisfies a form of (alternating) measure preservation,
namely

det dL̄ = ∂xn+3

∂xn

= �(xn, xn+1, xn+2)

�̃(xn+1, xn+2, xn+3)
, (62)

where the density � is

�(xn, xn+1, xn+2) = (xnxn+1xn+2)
−1

∣∣∣∣I11 I12

I21 I22

∣∣∣∣
−1

= (xnxn+1xn+2)
−1

x2
n · (

M
1,2
2 x2

n+1 + M
1,2
1 xn+1 + M

1,2
0

)
x2

n+2

.

In (62), �̃ again refers to the exchange αj ↔ βj and the result represents a generalization of
theorem 1 of [19], noting that (xnxn+1xn+2)

−1 is the density of L of (1) and L̄ arises from L
by the interchange of parameters and 2-integrals. The composition of L̄ with its upshift, i.e.
L̄̃ ◦ L̄, is no longer alternating and is measure preserving in the usual sense, with density �.
When we take αj = βj , L̄ itself ceases to be alternating and is also measure preserving with
the corresponding density �.

4. Concluding remarks

We conclude with the following remarks.

• The maps L of (1), L1 of (20) and L2 of (22) are all contained as special cases of the
general map L̄ of (52). In general, L̄ is an alternating map but when we choose αj = βj ,
it becomes non-alternating.

• The determinantal structure of L̄ and k1 and k2 of (42) and the fractional-linear form of
L̄ have analogues in the symmetric QRT map in two dimensions [21] when it is obtained
from the McMillan map via reparametrization and interchange [10].

This letter highlights the importance and usefulness of several recent developments in
discrete integrable systems: 2-integrals [5], interchange of parameters and integrals [19] and
alternating maps [15].
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