Creating and relating three-dimensional integrable maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 39 L605
(http://iopscience.iop.org/0305-4470/39/42/L03)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:53

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Creating and relating three-dimensional integrable maps 

John A G Roberts ${ }^{1,2}$ and G R W Quispel ${ }^{2,3}$<br>${ }^{1}$ School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia<br>${ }^{2}$ Centre of Excellence for Mathematics and Statistics of Complex Systems, La Trobe University, Melbourne VIC 3086, Australia<br>${ }^{3}$ Department of Mathematics, La Trobe University, Melbourne VIC 3086, Australia<br>E-mail: Jag.Roberts@unsw.edu.au and R.Quispel@latrobe.edu.au

Received 9 June 2006, in final form 9 August 2006
Published 4 October 2006
Online at stacks.iop.org/JPhysA/39/L605


#### Abstract

We show how some integrable third-order difference equations recently given in the literature are related to one another by the process of interchanging parameters and integrals. Using the same process, we then create a 21-parameter family of integrable third-order difference equations that contains the previous examples as special cases. Our methodology illustrates that the combination of finding 2 -integrals (i.e. integrals of the second iterate of the map), exploiting linear parameter dependence and using the interchange process provides a powerful way to relate and create higher-dimensional discrete integrable systems.


PACS number: 02.30.Ik

## 1. Introduction

Integrable systems in general are studied for various reasons: for their intrinsic physical and mathematical interest, as a starting point for a perturbative approach, as tests for various numerical methods. Discrete integrable systems in particular are studied because of their fundamental mathematical nature and their applications to various areas of physics (including statistical mechanics and quantum gravity) and because sometimes they are discrete analogues of integrable systems in classical mechanics or solid state physics [4, 14, 16-18, 23].

This letter is concerned with integrable mappings, in particular those that can be written as difference equations. Integrable mappings of the plane were first introduced by McMillan [13], with some precursors in the work of Lyness [11]. The McMillan and Lyness maps are generalized by the so-called QRT map [17, 18], which contains a large number of parameters, but is still a map of $\mathbb{R}^{2}$ (or a second-order difference equation). In recent years, some extensions
of integrable maps or difference equations to third (and higher) order have begun to appear [1, 2, 6-9, 14, 16, 22], but a comprehensive approach has been elusive.

Building on recent advances, this letter represents a first attempt at a more comprehensive approach to third-order integrable difference equations. In particular, it uses the technique of [19] extended to the concept of 2-integrals [5] to create new integrable maps that, in their most general form, are alternating [15]. Ultimately, we derive the fractional-linear third-order difference equation $\bar{L}$ of equation (52), which contains 21 parameters ( 6 of which alternate from one iterate to another). Its integrability derives from the possession of two integrals (42) and a measure-preservation property (62).

## 2. Interchange of 2-integrals and parameters to relate three existing integrable third-order difference equations

The following third-order difference equation was derived in [6]:

$$
\begin{equation*}
L: x_{n+3}=\frac{1}{x_{n}} \frac{p_{3} x_{n+1} x_{n+2}+p_{4}\left(x_{n+1}+x_{n+2}\right)+p_{5}}{p_{2} x_{n+1} x_{n+2}+p_{1}\left(x_{n+1}+x_{n+2}\right)+p_{3}} \tag{1}
\end{equation*}
$$

where $p_{1}, p_{2}, \ldots, p_{5}$ are arbitrary parameters. It has two integrals, as shown in [6], and is also (anti) measure preserving since

$$
\begin{equation*}
\operatorname{det} \mathrm{d} L=\frac{\partial x_{n+3}}{\partial x_{n}}=-\frac{m\left(x_{n}, x_{n+1}, x_{n+2}\right)}{m\left(x_{n+1}, x_{n+2}, x_{n+3}\right)} \tag{2}
\end{equation*}
$$

with density $m(x, y, z)=(x y z)^{-1}$. Hence, it is integrable [5]. It turns out that underlying the existence of the two integrals are two 2-integrals, $I_{1}$ and $I_{2}$, given by
$I_{1}\left(x_{n}, x_{n+1}, x_{n+2}\right)=\frac{p_{1} x_{n} x_{n+1} x_{n+2}+\left(p_{3} x_{n+1}+p_{4}\right)\left(x_{n}+x_{n+2}\right)+p_{4} x_{n+1}+p_{5}}{x_{n} x_{n+2}}$
$I_{2}\left(x_{n}, x_{n+1}, x_{n+2}\right)=\frac{\left(p_{2} x_{n+1}+p_{1}\right) x_{n} x_{n+2}+\left(p_{1} x_{n+1}+p_{3}\right)\left(x_{n}+x_{n+2}\right)+p_{4}}{x_{n+1}}$.
It can be verified that

$$
\begin{align*}
& I_{1}(n+1):=I_{1}\left(x_{n+1}, x_{n+2}, x_{n+3}\right)=I_{2}\left(x_{n}, x_{n+1}, x_{n+2}\right)=: I_{2}(n),  \tag{4}\\
& I_{2}(n+1):=I_{2}\left(x_{n+1}, x_{n+2}, x_{n+3}\right)=I_{1}\left(x_{n}, x_{n+1}, x_{n+2}\right)=: I_{1}(n), \tag{5}
\end{align*}
$$

whence

$$
\begin{equation*}
I_{1}(n+2)=I_{1}(n) \quad \text { and } \quad I_{2}(n+2)=I_{2}(n) \tag{6}
\end{equation*}
$$

The difference equation $L$ has a time-reversal symmetry [20], being conjugate to its inverse via the involution

$$
\begin{equation*}
G:\left(x_{n}, x_{n+1}, x_{n+2}\right) \rightarrow\left(x_{n+2}, x_{n+1}, x_{n}\right) \tag{7}
\end{equation*}
$$

A systematic method for finding third-order difference equations that possess 2-integrals, based upon assuming that the equations possess such time-reversal symmetry, will be detailed elsewhere [21]. For the moment, we note that the existence of the 2 -integrals $I_{1}$ and $I_{2}$ is a more fundamental invariance property of $L$ that implies the existence of the integrals. The 2 -integrals are also substantially more compact building blocks than the integrals. Specifically, we find that the integrals $H_{1}$ and $H_{2}$ of $L$ given in [6] can be expressed as ${ }^{4}$

[^0]\[

$$
\begin{align*}
& H_{1}=\frac{I_{1}+I_{2}-p_{3} H_{2}}{p_{4}}  \tag{8}\\
& H_{2}=\frac{I_{1} I_{2}-\left(4 p_{1} p_{4}+2 p_{3}^{2}+p_{2} p_{5}\right)}{p_{1} p_{4}} \tag{9}
\end{align*}
$$
\]

In [19], a process was described whereby new maps with integrals could be obtained from an original map with integrals. This process works by interchanging parameters with (the values of) integrals in the original map. It can be generalized to cover the case of $k$-integrals depending on parameters, as we now illustrate (a complete description of this will be given in [21]).

In particular, we can use the two 2-integrals to solve for any two parameters present in them. This is facilitated by the fact that the dependence of $I_{1}$ and $I_{2}$ upon their five parameters is linear (in stark contrast to the case of the integrals $H_{1}$ and $H_{2}$ ). Consider the equations ${ }^{5}$

$$
\begin{equation*}
I_{1}(n)=-\alpha(n) \quad I_{2}(n)=-\beta(n) \tag{10}
\end{equation*}
$$

where from (4)-(6)
$\alpha(n+1)=\beta(n) \quad$ and $\quad \beta(n+1)=\alpha(n) \Rightarrow \alpha(n+2)=\alpha(n) \quad$ and $\quad \beta(n+2)=\beta(n)$.

Equations (10) define a linear system in the parameters $p_{1}, p_{2}, \ldots, p_{5}$. Arbitrarily distinguishing two of these, calling them $K_{1}$ and $K_{2}$, we can write

$$
\begin{equation*}
J(n)\binom{K_{1}}{K_{2}}=-\binom{\alpha(n)+\tilde{I}_{1}(n)}{\beta(n)+\tilde{I}_{2}(n)} . \tag{12}
\end{equation*}
$$

Here,

$$
J(n):=\left(\begin{array}{ll}
\frac{\partial I_{1}(n)}{\partial K_{1}} & \frac{\partial I_{1}(n)}{\partial K_{2}}  \tag{13}\\
\frac{\partial I_{2}(n)}{\partial K_{1}} & \frac{\partial I_{2}(n)}{\partial K_{2}}
\end{array}\right)
$$

and $\tilde{I}_{i}(n), i=1,2$ are the parts of $I_{i}(n)$ not involving $K_{1}$ or $K_{2}$. Solving (12) for $K_{1}$ and $K_{2}$, we obtain

$$
\begin{align*}
& K_{1}=: k_{1}\left(x_{n}, x_{n+1}, x_{n+2}, \tilde{\boldsymbol{p}}, \alpha(n), \beta(n)\right),  \tag{14}\\
& K_{2}=: k_{2}\left(x_{n}, x_{n+1}, x_{n+2}, \tilde{\boldsymbol{p}}, \alpha(n), \beta(n)\right), \tag{15}
\end{align*}
$$

where $\tilde{\boldsymbol{p}}$ represent the parameters not chosen as either $K_{1}$ or $K_{2}$. Similarly, the equations $I_{1}(n+1)=\alpha(n+1)$ and $I_{2}(n+1)=\beta(n+1)$ lead to the system

$$
\begin{equation*}
J(n+1)\binom{K_{1}}{K_{2}}=-\binom{\beta(n)+\tilde{I}_{1}(n+1)}{\alpha(n)+\tilde{I}_{2}(n+1)} \tag{16}
\end{equation*}
$$

noting the use of (11) to update the parameters on the right-hand side. Since $K_{1}$ and $K_{2}$ must simultaneously satisfy both (12) and (16), we conclude that the difference equation $\bar{L}$ formed from $L$ by replacing, respectively, $K_{1}$ and $K_{2}$ with $k_{1}$ and $k_{2}$ has the integrals $k_{1}$ and $k_{2}$ (i.e. they equal their upshift). The map $\bar{L}$ and $k_{1}$ and $k_{2}$ now contain the $n$-dependent parameters $\alpha(n)$ and $\beta(n)$ satisfying from (11)

$$
\begin{equation*}
\alpha(n)=\alpha_{0}+(-1)^{n} \alpha_{1}, \quad \beta(n)=\alpha_{0}-(-1)^{n} \alpha_{1} \tag{17}
\end{equation*}
$$

where $\alpha_{0}$ and $\alpha_{1}$ are constants.

[^1]

Figure 1. Summary of relations between the difference equations $L, L_{1}$ and $L_{2}$ established by interchanging parameters and 2-integrals, as described in the text. All interchanges can be inverted to go in the other direction.

In summary, the map $L$ containing constant parameters and possessing two 2-integrals becomes the map $\bar{L}$ containing a 2 -cycle of parameters and possessing two integrals. This interchange can be encoded as

$$
\begin{equation*}
\left\{\left(I_{1}, I_{2}\right) ; K_{1}, K_{2}\right\} \rightarrow\left\{k_{1}, k_{2} ;(\alpha, \beta)\right\} \tag{18}
\end{equation*}
$$

where the semicolon in each bracket separates integrals to its left from parameters on its right, and the round brackets represent a 2 -cycle in integrals or in parameters (in two dimensions, alternating versions of the QRT map with one integral have been recently studied in [15]).

To exemplify the above process, first consider solving (3) and (12) for $K_{1}=p_{5}$ and $K_{2}=p_{2}$. This yields
$k_{1}=-\alpha(n) x_{n} x_{n+2}-p_{1} x_{n} x_{n+1} x_{n+2}-p_{3} x_{n+1}\left(x_{n}+x_{n+2}\right)-p_{4}\left(x_{n}+x_{n+1}+x_{n+2}\right)$,
$k_{2}=-\frac{p_{1}\left(x_{n} x_{n+1}+x_{n} x_{n+2}+x_{n+1} x_{n+2}\right)+p_{3}\left(x_{n}+x_{n+2}\right)+p_{4}+\beta(n) x_{n+1}}{x_{n} x_{n+1} x_{n+2}}$,
where $\alpha(n)$ and $\beta(n)$ are given by (17). With these replacements, $\bar{L}$ becomes

$$
\begin{equation*}
L_{1}: x_{n+3}=x_{n} \frac{p_{4}+p_{3} x_{n+1}+\alpha(n) x_{n+2}+p_{1} x_{n+1} x_{n+2}}{p_{4}+p_{3} x_{n+2}+\beta(n) x_{n+1}+p_{1} x_{n+1} x_{n+2}} \tag{20}
\end{equation*}
$$

The third-order difference equation $L_{1}$ is a generalization of the one studied in [22]. It is measure preserving with density $m_{1}\left(x_{n}, x_{n+1}, x_{n+2}\right)=\left(x_{n} x_{n+1} x_{n+2}\right)^{-1}$.

Another possibility is constructing (12) from (3) with $K_{1}=p_{5}$ and $K_{2}=p_{4}$. This yields
$k_{1}=-\alpha(n) x_{n} x_{n+2}-p_{1} x_{n} x_{n+1} x_{n+2}-p_{3} x_{n+1}\left(x_{n}+x_{n+2}\right)-\left(x_{n}+x_{n+1}+x_{n+2}\right) k_{2}$, $k_{2}=-\beta(n) x_{n+1}-p_{2} x_{n} x_{n+1} x_{n+2}-p_{1}\left(x_{n} x_{n+2}+x_{n} x_{n+1}+x_{n+1} x_{n+2}\right)-p_{3}\left(x_{n}+x_{n+2}\right)$.

With these replacements, $\bar{L}$ becomes

$$
\begin{equation*}
L_{2}: x_{n+3}=x_{n}-\frac{p_{3}\left(x_{n+1}-x_{n+2}\right)-\beta(n) x_{n+1}+\alpha(n) x_{n+2}}{p_{3}+p_{1}\left(x_{n+1}+x_{n+2}\right)+p_{2} x_{n+1} x_{n+2}} . \tag{22}
\end{equation*}
$$

The equation $L_{2}$ is volume preserving and represents a generalization, with alternating parameters, of equation (12) of [8] (in particular, the latter is obtained by taking $p_{1}=0$ and $\alpha(n)=\beta(n)=\alpha_{0}$ in $L_{2}$ ). Note that both integrals of $L_{2}$ are now polynomials. It is also the case that $L_{2}$ can be obtained directly from $L_{1}$, an application of the interchange of parameters and integrals as originally advanced in [19]. This is achieved by solving the second equation of (19) for $p_{4}$ and renaming the value of $k_{2}$ there by $p_{2}$. Replacing for $p_{4}$ in $L_{1}$ then yields $L_{2}$. It is also seen that the expression obtained by solving for $p_{4}$ is precisely the integral $k_{2}$ in (21), whereas $k_{1}$ of (21) follows from $k_{1}$ of (19) with $p_{4}$ also replaced. Summarizing, the three integrable difference equations $L, L_{1}$ and $L_{2}$ can all be obtained from one another via the interchange process. In other words, any two can be generated from the third. This is highlighted schematically in figure 1.

## 3. Reparametrization and interchange of 2 -integrals and parameters to create a new class of integrable third-order difference equations

In fuller generality, analogous to the case of integrals described in [19], we can reparametrize all parameters in $L$ and its two 2-integrals, in terms of two parameters $K_{1}$ and $K_{2}$. That is, we let

$$
\begin{equation*}
p_{i} \rightarrow p_{i}^{0}+p_{i}^{1} K_{1}+p_{i}^{2} K_{2}, \quad i=1, \ldots, 5, \tag{23}
\end{equation*}
$$

i.e. each parameter $p_{i}$ is 'replaced' by three parameters $p_{i}^{0}, p_{i}^{1}$ and $p_{i}^{2}$ (note that the superscripts here do not denote powers). Similarly, we can reparametrize

$$
\begin{align*}
& I_{1}+\alpha \rightarrow\left(I_{1}^{0}+I_{1}^{1} K_{1}+I_{1}^{2} K_{2}\right)+\left(\alpha^{0}+\alpha^{1} K_{1}+\alpha^{2} K_{2}\right)  \tag{24}\\
& I_{2}+\beta \rightarrow\left(I_{2}^{0}+I_{2}^{1} K_{1}+I_{2}^{2} K_{2}\right)+\left(\beta^{0}+\beta^{1} K_{1}+\beta^{2} K_{2}\right) \tag{25}
\end{align*}
$$

In (24), $I_{1}^{0}$ is the 2-integral $I_{1}$ of $L$ with $p_{i} \rightarrow p_{i}^{0}$ and
$\alpha^{j}(n+1)=\beta^{j}(n) \quad$ and $\quad \beta^{j}(n+1)=\alpha^{j}(n), \quad j=0,1,2$.
It is seen that (24) and (25) incorporate the $p_{i}$ reparametrization in terms of $K_{1}$ and $K_{2}$ as well as the 'expansion' of $\alpha$ and $\beta$, respectively, satisfying (26). This extra reparametrization is simply a reflection of the fact that the addition of an alternating parameter, or a linear combination of alternating parameters, to a 2 -integral still gives a 2 -integral of the map. At this point, the expanded $p_{i}, \alpha$ and $\beta$, together with $K_{1}$ and $K_{2}$, should all be considered parameters on an equal footing. Substituting these reparametrizations into (1) and (3), the linear dependence of $L$ and of $I_{1}$ and $I_{2}$ on the parameters means that we can achieve the following trivial reformulation of the properties of $L$ : the third-order difference equation

$$
\begin{equation*}
\hat{L}: x_{n+3}=\frac{\left(N_{0}, N_{1}, N_{2}\right) \cdot\left(1, K_{1}, K_{2}\right)}{\left(D_{0}, D_{1}, D_{2}\right) \cdot\left(1, K_{1}, K_{2}\right)}=\frac{\boldsymbol{N} \cdot \boldsymbol{K}}{\boldsymbol{D} \cdot \boldsymbol{K}} \tag{27}
\end{equation*}
$$

possesses the 2-integrals

$$
\begin{align*}
& \hat{I}_{1}=\left(I_{1}^{0}+\alpha^{0}, I_{1}^{1}+\alpha^{1}, I_{1}^{2}+\alpha^{2}\right) \cdot\left(1, K_{1}, K_{2}\right)=\boldsymbol{I}_{1} \cdot \boldsymbol{K}  \tag{28}\\
& \hat{I}_{2}=\left(I_{2}^{0}+\beta^{0}, I_{2}^{1}+\beta^{1}, I_{2}^{2}+\beta^{2}\right) \cdot\left(1, K_{1}, K_{2}\right)=\boldsymbol{I}_{2} \cdot \boldsymbol{K} \tag{29}
\end{align*}
$$

In (27), the vector $\boldsymbol{N}:=\left(N_{0}, N_{1}, N_{2}\right)$, where $N_{0}$ is the numerator on the rhs of $L$ with $p_{i} \rightarrow p_{i}^{0}$ etc, and similarly for $\boldsymbol{D}$, the corresponding vector built from copies of the denominator. The vector $\boldsymbol{K}:=\left(1, K_{1}, K_{2}\right)$. For brevity, we define $\boldsymbol{I}_{1}=\left(I_{10}, I_{11}, I_{12}\right)$ and similarly for $\boldsymbol{I}_{2}$, where

$$
\begin{equation*}
I_{1 j}:=I_{1}^{j}+\alpha^{j}, \quad I_{2 j}:=I_{2}^{j}+\beta^{j}, \quad j=0,1,2 \tag{30}
\end{equation*}
$$

Now, as in the similar philosophy for the case of integrals as discussed in [19], we now take $K_{1}$ and $K_{2}$ as distinguished parameters chosen to satisfy $\hat{I}_{1}(n)=0$ and $\hat{I}_{2}(n)=0$ respectively. These two equations, the generalizations of (10), define a linear system (12) for $K_{1}$ and $K_{2}$ where now $J=\left(\begin{array}{ll}I_{11} & I_{12} \\ I_{21} & I_{22}\end{array}\right)$ and the right-hand side of (12) is now $-\binom{I_{10}}{I_{20}} .{ }^{6}$ The ensuing discussion concerning generating a new difference equation by replacing $K_{1}$ and $K_{2}$ applies, this new difference equation preserving integrals $k_{1}$ and $k_{2}$ given by solving, respectively, for $K_{1}$ and $K_{2}$. The reparametrizations we used above will mean that this new difference equation is much more general than the examples discussed in section 2 as we have tripled the number of parameters. Ultimately, we will derive $\bar{L}$ of equation (52), which contains 21 arbitrary

[^2]parameters ( 6 of which alternate from one iterate to another). Nevertheless, the examples in section 2 will be special cases of our final result $\bar{L}$, for example, $L_{1}$ of (20) corresponds to taking $\left\{p_{i}^{1}=p_{i}^{2}=0, i=1,3,4 ; p_{5}^{1}=p_{2}^{2}=1 ; p_{5}^{0}=p_{5}^{2}=p_{2}^{0}=p_{2}^{1}=0 ; \alpha^{i}=\beta^{i}=0, i=1,2\right\}$. Moreover, the original equation $L$ of (1) corresponds to taking $\left\{p_{i}^{1}=p_{i}^{2}=0, i=1, \ldots, 5\right\}$ so that no replacement of parameters in $L$ actually occurs (in this case, $J=\left(\begin{array}{cc}\alpha^{1} & \alpha^{2} \\ \beta^{1} & \beta^{2}\end{array}\right)$ so that the integrals $k_{1}$ and $k_{2}$ are, in general, certain $L$-invariant linear combinations of the 2 -integrals $I_{1}$ and $I_{2}$ ). This further highlights the benefits of 'expanding' $\alpha$ and $\beta$ in (24)-(26) to include $\alpha^{i}$ and $\beta^{i}$ for $i=1,2$, as it allows the final result to include the starting point as a special case.

We proceed to the derivation of $\bar{L}$ of equation (52). From (28)-(29), we see that the solutions of $\hat{I}_{1}(n)=0$ and $\hat{I}_{2}(n)=0$ can be expressed vectorially as

$$
\boldsymbol{k}:=\left(1, k_{1}, k_{2}\right)=\left|\begin{array}{ll}
I_{11} & I_{12}  \tag{31}\\
I_{21} & I_{22}
\end{array}\right|^{-1} \quad\left(\boldsymbol{I}_{1} \times \boldsymbol{I}_{2}\right)
$$

and equivalently, by Cramer's rule, as

$$
k_{1}=-\frac{\left|\begin{array}{ll}
I_{10} & I_{12}  \tag{32}\\
I_{20} & I_{22}
\end{array}\right|}{\left|\begin{array}{ll}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right|}, \quad k_{2}=-\frac{\left|\begin{array}{ll}
I_{11} & I_{10} \\
I_{21} & I_{20}
\end{array}\right|}{\left|\begin{array}{ll}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right|} .
$$

The third-order difference equation $\bar{L}$ preserving these integrals follows from (27) with (31), i.e.

$$
\begin{equation*}
\bar{L}: x_{n+3}=\frac{\boldsymbol{N} \cdot \boldsymbol{I}_{1} \times \boldsymbol{I}_{2}}{\boldsymbol{D} \cdot \boldsymbol{I}_{1} \times \boldsymbol{I}_{2}}, \tag{33}
\end{equation*}
$$

equivalently,

$$
\bar{L}: x_{n+3}=\frac{\left|\begin{array}{lll}
N_{0} & N_{1} & N_{2}  \tag{34}\\
I_{10} & I_{11} & I_{12} \\
I_{20} & I_{21} & I_{22}
\end{array}\right|}{\left|\begin{array}{lll}
D_{0} & D_{1} & D_{2} \\
I_{10} & I_{11} & I_{12} \\
I_{20} & I_{21} & I_{22}
\end{array}\right|} .
$$

Note that equations (32) and (34) actually hold more generally than those derived from just (1). That is, suppose we are given an original third-order rational difference equation $L: x_{n+3}=\frac{N}{D}$, where $N$ and $D$ are general polynomial expressions in $\left\{x_{n}, x_{n+1}, x_{n+2}\right\}$ which have linear dependence on parameters. If, additionally, there are two 2 -integrals $I_{1}$ and $I_{2}$ with linear dependence on parameters, (34) describes a new third-order rational difference equation preserving the integrals $k_{1}$ and $k_{2}$ given by (32) that can be obtained from the original by the processes of reparametrization and replacement.

Turning back to the specific starting points (1) and (3), we now give the explicit details of (31) and (34) in this case. The calculation of $k_{1}, k_{2}$ and $\bar{L}$ both involve the calculation of determinants whose entries are bilinear or trilinear forms, so it is useful to have a formalism for the products of such forms.

For $i \geqslant 1$, define the $(i+1)$-dimensional vector

$$
\boldsymbol{x}^{i}:=\left(\begin{array}{c}
x^{i}  \tag{35}\\
x^{i-1} \\
\vdots \\
1
\end{array}\right)
$$

With $A_{i}$ as an $(i+1) \times(i+1)$ matrix, $x^{i} \cdot A_{i} z^{i}$ defines a form of degree $i$ in $x$ and $z$. The multiplication of two forms can be achieved using the Kronecker product [3] (or tensor product) $\otimes$ :

$$
\begin{equation*}
\left(\boldsymbol{x}^{i} \cdot A_{i} z^{i}\right)\left(\boldsymbol{x}^{j} \cdot A_{j} z^{j}\right)=\left(\boldsymbol{x}^{i} \otimes \boldsymbol{x}^{j}\right) \cdot\left(A_{i} \otimes A_{j}\right)\left(\boldsymbol{z}^{i} \otimes \boldsymbol{z}^{j}\right) \tag{36}
\end{equation*}
$$

Note that $\left(\boldsymbol{x}^{i} \otimes \boldsymbol{x}^{j}\right)$ is $(i+1)(j+1)$-dimensional and the matrix $A_{i} \otimes A_{j}$ is $(i+1)(j+1) \times$ $(i+1)(j+1)$. Here, we wish to use a certain contraction of the Kronecker product of $A_{i}$ and $A_{j}$ which we denote by $\boxtimes$. We define $A_{i} \boxtimes A_{j}$ in the following way:
$\left(x^{i} \cdot A_{i} z^{i}\right)\left(x^{j} \cdot A_{j} z^{j}\right)=\left(x^{i} \otimes x^{j}\right) \cdot\left(A_{i} \otimes A_{j}\right)\left(z^{i} \otimes z^{j}\right)=: x^{i+j} \cdot\left(A_{i} \boxtimes A_{j}\right) z^{i+j}$.
This uniquely defines $A_{i} \boxtimes A_{j}$ as a $(i+j+1) \times(i+j+1)$ matrix. Its entries come from certain sums of the entries in appropriate rows and columns of $A_{i} \otimes A_{j} .{ }^{7}$ Note that $A_{i} \boxtimes A_{j}$ is a commutative operation, unlike $A_{i} \otimes A_{j}$. Nevertheless, many properties of the product $\boxtimes$ we use below can be inferred from those of $\otimes$.

The 2-integral $I_{1}+\alpha$ is a trilinear form in $x_{n}, x_{n+1}$ and $x_{n+2}$. Two ways in which it can be written are

$$
\begin{equation*}
I_{1}+\alpha=\frac{\boldsymbol{x}_{n}^{1} \cdot A_{1} \boldsymbol{x}_{n+2}^{1}}{x_{n} x_{n+2}}=\frac{\boldsymbol{x}_{n+1}^{1} \cdot B_{1} \boldsymbol{x}_{n+2}^{1}}{x_{n} x_{n+2}} \tag{38}
\end{equation*}
$$

where $\boldsymbol{x}_{n}^{1}=\binom{x_{n}}{1}$ etc, following the notation of (35), and
$A_{1}:=\left(\begin{array}{cc}p_{1} x_{n+1}+\alpha & p_{3} x_{n+1}+p_{4} \\ p_{3} x_{n+1}+p_{4} & p_{4} x_{n+1}+p_{5}\end{array}\right), \quad B_{1}:=\left(\begin{array}{cc}p_{1} x_{n}+p_{3} & p_{3} x_{n}+p_{4} \\ \alpha x_{n}+p_{4} & p_{4} x_{n}+p_{5}\end{array}\right)$.
Similarly,

$$
\begin{equation*}
I_{2}+\beta=\frac{\boldsymbol{x}_{n}^{1} \cdot A_{2} \boldsymbol{x}_{n+2}^{1}}{x_{n+1}}=\frac{\boldsymbol{x}_{n+1}^{1} \cdot B_{2} \boldsymbol{x}_{n+2}^{1}}{x_{n+1}} \tag{40}
\end{equation*}
$$

with
$A_{2}:=\left(\begin{array}{cc}p_{2} x_{n+1}+p_{1} & p_{1} x_{n+1}+p_{3} \\ p_{1} x_{n+1}+p_{3} & \beta x_{n+1}+p_{4}\end{array}\right), \quad B_{2}:=\left(\begin{array}{cc}p_{2} x_{n}+p_{1} & p_{1} x_{n}+\beta \\ p_{1} x_{n}+p_{3} & p_{3} x_{n}+p_{4}\end{array}\right)$.
The denominators in (38) and (40) are independent of parameters, and hence will cancel in the rational expressions for $k_{1}$ and $k_{2}$ in (32). Consequently, the entries in the determinants in the latter can be taken to be the bilinear forms in the numerators of the first expressions in (38) and (40), with the matrix $A_{i}, i=1,2$, replaced by e.g. $A_{i}^{0}$ in $I_{i 0}$ so as to depend on $p_{i}^{0}$ etc.

We obtain that the integrals $k_{1}$ and $k_{2}$ are ratios of symmetric triquadratic forms (in particular, biquadratic in $x_{n}$ and $x_{n+2}$ ), which, using the product $\boxtimes$, we can write as
$k_{1}=-\frac{\boldsymbol{x}_{n}^{2} \cdot\left|\begin{array}{ll}A_{1}^{0} & A_{1}^{2} \\ A_{2}^{0} & A_{2}^{2}\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{2}}{\boldsymbol{x}_{n}^{2} \cdot\left|\begin{array}{ll}A_{1}^{1} & A_{1}^{2} \\ A_{2}^{1} & A_{2}^{2}\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{2}}=-\frac{\boldsymbol{x}_{n}^{2} \cdot\left(M_{2}^{0,2} x_{n+1}^{2}+M_{1}^{0,2} x_{n+1}+M_{0}^{0,2}\right) \boldsymbol{x}_{n+2}^{2}}{\boldsymbol{x}_{n}^{2} \cdot\left(M_{2}^{1,2} x_{n+1}^{2}+M_{1}^{1,2} x_{n+1}+M_{0}^{1,2}\right) \boldsymbol{x}_{n+2}^{2}}$
$k_{2}=-\frac{\boldsymbol{x}_{n}^{2} \cdot\left|\begin{array}{ll}A_{1}^{1} & A_{1}^{0} \\ A_{2}^{1} & A_{2}^{0}\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{2}}{\boldsymbol{x}_{n}^{2} \cdot \left\lvert\, \begin{array}{ll}A_{1}^{1} & A_{1}^{2} \\ A_{2}^{1} & A_{2}^{2}\end{array}\right. \|_{\boxtimes} \boldsymbol{x}_{n+2}^{2}}=-\frac{\boldsymbol{x}_{n}^{2} \cdot\left(M_{2}^{1,0} x_{n+1}^{2}+M_{1}^{1,0} x_{n+1}+M_{0}^{1,0}\right) \boldsymbol{x}_{n+2}^{2}}{\boldsymbol{x}_{n}^{2} \cdot\left(M_{2}^{1,2} x_{n+1}^{2}+M_{1}^{1,2} x_{n+1}+M_{0}^{1,2}\right) \boldsymbol{x}_{n+2}^{2}}$.
${ }^{7}$ For example, when $i=2, j=1$, the $4 \times 4$ matrix $A_{i} \boxtimes A_{j}$ is derived from the $6 \times 6$ matrix $A_{i} \otimes A_{j}$ in the following way: (i) simultaneously merge, under addition, the second and third rows of the latter into one row and the fourth and fifth rows into another row, yielding an intermediary $4 \times 6$ matrix; (ii) convert the $4 \times 6$ matrix into $A_{2} \boxtimes A_{1}$ by repeating (i) on the corresponding columns.

Here, $|\cdots| \boxtimes$ refers to a determinant with respect to the matrix product $\boxtimes$. This matrix determinant, and the linear dependence of (39) and (41) on the parameters, induces a ( $2 \times 2$ )determinantal structure in the parameters of each entry of the resulting symmetric $3 \times 3$ matrices defining each biquadratic form. For ease of notation, we define e.g.

$$
31^{1,2}:=\left|\begin{array}{cc}
p_{3}^{1} & p_{3}^{2}  \tag{43}\\
p_{1}^{1} & p_{1}^{2}
\end{array}\right|, \quad 1 \beta^{0,2}:=\left|\begin{array}{cc}
p_{1}^{0} & p_{1}^{2} \\
\beta^{0} & \beta^{2}
\end{array}\right|
$$

and the symmetric matrices $M_{i}^{k, l}$ take the form

$$
\begin{aligned}
M_{2}^{k, l} & =\left(\begin{array}{ccc}
12 & 32 & 31 \\
\star & 42+1 \beta+2 \cdot 31 & 3 \beta+41 \\
\star & \star & 4 \beta
\end{array}\right)^{k, l} \\
M_{1}^{k, l} & =\left(\begin{array}{ccc}
\alpha 2 & \alpha 1+42 & 41 \\
\star & \alpha \beta+2 \cdot 41+52 & 4 \beta+51 \\
\star & \star & 5 \beta
\end{array}\right)^{k, l} \\
M_{0}^{k, l} & =\left(\begin{array}{ccc}
\alpha 1 & \alpha 3+41 & 43 \\
\star & 51+2 \cdot 43+\alpha 4 & 53 \\
\star & \star & 54
\end{array}\right)^{k, l}
\end{aligned}
$$

where the superscripts for the matrices indicate that they should be applied to each entry so as to create determinants like (43) and $\star$ entries follow from the symmetry of the matrices (note also $2 \cdot 31^{k, l}=31^{k, l}+31^{k, l}$ etc). For notational convenience, the $n$-dependence of $\alpha^{j}$ and $\beta^{j}$ in the matrices $M_{i}^{k, l}$ is suppressed, but (26) should be used in the upshifts of $k_{1}$ and $k_{2}$.

Now we give the details of $\bar{L}$ of (34). We write the numerator $N$ and denominator $D$ of $L$ of (1), both bilinear forms in $x_{n+1}$ and $x_{n+2}$, as

$$
\begin{equation*}
N=\boldsymbol{x}_{n+1}^{1} \cdot B_{N} \boldsymbol{x}_{n+2}^{1}, \quad D=\boldsymbol{x}_{n+1}^{1} \cdot\left(x_{n} B_{D}\right) \boldsymbol{x}_{n+2}^{1} \tag{44}
\end{equation*}
$$

with

$$
B_{N}:=\left(\begin{array}{cc}
p_{3} & p_{4}  \tag{45}\\
p_{4} & p_{5}
\end{array}\right), \quad B_{D}:=\left(\begin{array}{cc}
p_{2} & p_{1} \\
p_{1} & p_{3}
\end{array}\right)
$$

Noting the second expressions for $I_{1}+\alpha$ and $I_{2}+\beta$ in (38) and (40) respectively, it follows from (34) that

$$
\bar{L}: x_{n+3}=\frac{\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{ccc}
B_{N}^{0} & B_{N}^{1} & B_{N}^{2}  \tag{46}\\
B_{1}^{0} & B_{1}^{1} & B_{1}^{2} \\
B_{2}^{0} & B_{2}^{1} & B_{2}^{2}
\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}}{\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{ccc}
x_{n} B_{D}^{0} & x_{n} B_{D}^{1} & x_{n} B_{D}^{2} \\
B_{1}^{0} & B_{1}^{1} & B_{1}^{2} \\
B_{2}^{0} & B_{2}^{1} & B_{2}^{2}
\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}}=:\left.\frac{\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{c}
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2}
\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}}{x_{n}^{3}} \begin{gathered}
\boldsymbol{B}_{\boldsymbol{D}} \\
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2}
\end{gathered}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}
$$

where $\boldsymbol{B}_{N}$ represents the row vector in the matrix determinant. The numerator and denominator of $\bar{L}$ are bicubic expressions in $x_{n+1}$ and $x_{n+2}$, respectively. We now show that they can be taken as linear in $x_{n}$ via a cancellation. Note the decompositions

$$
\begin{align*}
& B_{1}:=x_{n} B_{11}+B_{N},  \tag{47}\\
& B_{2}:=x_{n} B_{D}+B_{11}^{\tau}, \tag{48}
\end{align*}
$$

where

$$
B_{11}:=\left(\begin{array}{cc}
p_{1} & p_{3}  \tag{49}\\
\alpha & p_{4}
\end{array}\right)
$$

the superscript $t$ denotes transpose and the superscript ${ }^{\sim}$ means the exchange $\alpha \leftrightarrow \beta$. These allow simplifications in the matrix determinants of (46):

$$
\begin{align*}
& \left|\begin{array}{c}
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2}
\end{array}\right|_{\boxtimes}=\left|\begin{array}{c}
\boldsymbol{B}_{N} \\
x_{n} \boldsymbol{B}_{11}+\boldsymbol{B}_{N} \\
x_{n} \boldsymbol{B}_{D}+\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes}=\left|\begin{array}{c}
\boldsymbol{B}_{N} \\
x_{n} \boldsymbol{B}_{11} \\
x_{n} \boldsymbol{B}_{D}+\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes}=x_{n}^{2}\left|\begin{array}{l}
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{11} \\
\boldsymbol{B}_{D}
\end{array}\right|_{\boxtimes}+x_{n}\left|\begin{array}{l}
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{11} \\
\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes},  \tag{50}\\
& \left|\begin{array}{c}
x_{n} \boldsymbol{B}_{D} \\
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2}
\end{array}\right|_{\boxtimes}=\left|\begin{array}{c}
x_{n} \boldsymbol{B}_{D} \\
x_{n} \boldsymbol{B}_{11}+\boldsymbol{B}_{N} \\
x_{n} \boldsymbol{B}_{D}+\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes}=\left|\begin{array}{c}
x_{n} \boldsymbol{B}_{D} \\
x_{n} \boldsymbol{B}_{11}+\boldsymbol{B}_{N} \\
\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes}=x_{n}^{2}\left|\begin{array}{l}
\boldsymbol{B}_{D} \\
\boldsymbol{B}_{11} \\
\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes}+x_{n}\left|\begin{array}{l}
\boldsymbol{B}_{D} \\
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes}, \tag{51}
\end{align*}
$$

which can be viewed as the result of row operations on the matrix determinant ${ }^{8}$. This gives the fractional-linear form

$$
\begin{equation*}
\bar{L}: x_{n+3}=\frac{f_{1}\left(x_{n+1}, x_{n+2}\right) x_{n}+f_{2}\left(x_{n+1}, x_{n+2}\right)}{f_{3}\left(x_{n+1}, x_{n+2}\right) x_{n}+\tilde{f}_{1}\left(x_{n+2}, x_{n+1}\right)}, \tag{52}
\end{equation*}
$$

with the functions $f_{i}$ bicubic in their arguments:

$$
\begin{align*}
& f_{1}\left(x_{n+1}, x_{n+2}\right)=\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{l}
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{11} \\
\boldsymbol{B}_{D}
\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}=\boldsymbol{x}_{n+1}^{3} \cdot \boldsymbol{H}_{1} \boldsymbol{x}_{n+2}^{3},  \tag{53}\\
& f_{2}\left(x_{n+1}, x_{n+2}\right)=\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{l}
\boldsymbol{B}_{N} \\
\boldsymbol{B}_{11} \\
\boldsymbol{B}_{11}^{\tau}
\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}=\boldsymbol{x}_{n+1}^{3} \cdot \boldsymbol{H}_{2} \boldsymbol{x}_{n+2}^{3},  \tag{54}\\
& f_{3}\left(x_{n+1}, x_{n+2}\right)=\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{l}
\boldsymbol{B}_{D} \\
\boldsymbol{B}_{11} \\
\boldsymbol{B}_{11}^{t}
\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}=\boldsymbol{x}_{n+1}^{3} \cdot \boldsymbol{H}_{3} \boldsymbol{x}_{n+2}^{3}, \tag{55}
\end{align*}
$$

The function $\tilde{f}_{1}$ is $f_{1}$ with the exchange $\alpha^{j} \leftrightarrow \beta^{j}$. This follows since the term independent of $x_{n}$ on the denominator of $\bar{L}$ is, from (51),
$\boldsymbol{x}_{n+1}^{3} \cdot\left|\begin{array}{l}\boldsymbol{B}_{D} \\ \boldsymbol{B}_{N} \\ \boldsymbol{B}_{11}^{\tau}\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+2}^{3}=\boldsymbol{x}_{n+2}^{3} \cdot\left|\begin{array}{l}\boldsymbol{B}_{D} \\ \boldsymbol{B}_{N} \\ \boldsymbol{B}_{11}^{\tilde{t}}\end{array}\right|_{\boxtimes}^{t} \boldsymbol{x}_{n+1}^{3}=\boldsymbol{x}_{n+2}^{3} \cdot\left|\begin{array}{l}\boldsymbol{B}_{D} \\ \boldsymbol{B}_{N} \\ \boldsymbol{B}_{11}\end{array}\right|_{\boxtimes} \boldsymbol{x}_{n+1}^{3}=\tilde{f}_{1}\left(x_{n+2}, x_{n+1}\right)$,
noting that $B_{D}$ and $B_{N}$ are symmetric and independent of $\alpha, \beta$, and that the transpose distributes over the product $\boxtimes$. Similar manipulations show that the $4 \times 4$ matrices $H_{2}$ and $H_{3}$ satisfy a type of skew symmetry

$$
\begin{equation*}
H_{j}^{\tilde{t}}=-H_{j}, \quad j=2,3 . \tag{57}
\end{equation*}
$$

The entries of $H_{1}, H_{2}$ and $H_{3}$ can be expressed in terms of $(3 \times 3)$ determinants in the parameters. Define e.g.

$$
123:=\left|\begin{array}{lll}
p_{1}^{0} & p_{1}^{1} & p_{1}^{2}  \tag{58}\\
p_{2}^{0} & p_{2}^{1} & p_{2}^{2} \\
p_{3}^{0} & p_{3}^{1} & p_{3}^{2}
\end{array}\right|, \quad 34 \beta:=\left|\begin{array}{ccc}
p_{3}^{0} & p_{3}^{1} & p_{3}^{2} \\
p_{4}^{0} & p_{4}^{1} & p_{4}^{2} \\
\beta^{0} & \beta^{1} & \beta^{2}
\end{array}\right|,
$$

[^3]showing that the triple indices are equal to their cyclic permutations. Then,
\[

$$
\begin{align*}
& H_{1}=\left(\begin{array}{cccc}
123 & 124 & 243 & 143 \\
124+23 \alpha & 24 \alpha+13 \alpha+125 & 253+14 \alpha & 153 \\
13 \alpha+24 \alpha & 134+25 \alpha+2 \cdot 14 \alpha & 254+15 \alpha+34 \alpha & 154 \\
14 \alpha & 15 \alpha+34 \alpha & 154+35 \alpha & 354
\end{array}\right)  \tag{59}\\
& H_{2}=\left(\begin{array}{cccc}
0 & 31 \beta & 143+41 \beta & 43 \beta \\
\star & 14 \alpha+41 \beta+3 \alpha \beta & 153+51 \beta+4 \alpha \beta & 53 \beta \\
\star & \star & 5 \alpha \beta & 345+54 \beta \\
\star & \star & \star & 0
\end{array}\right) \tag{60}
\end{align*}
$$
\]

and

$$
H_{3}=\left(\begin{array}{cccc}
0 & 123+21 \beta & 23 \beta & 13 \beta  \tag{61}\\
\star & 2 \alpha \beta & 234+24 \beta+1 \alpha \beta & 134+14 \beta \\
\star & \star & 41 \alpha+14 \beta+3 \alpha \beta & 34 \beta \\
\star & \star & \star & 0
\end{array}\right)
$$

where property (57) can be used to complete the below-diagonal entries of $H_{2}$ and $H_{3}$, e.g. $\left(H_{2}\right)_{32}=-(153+51 \alpha+4 \beta \alpha)=135+15 \alpha+4 \alpha \beta$ (note that the diagonal entries of $H_{2}$ and $H_{3}$ change sign under interchange of $\alpha$ and $\beta$ ).

Finally, we point out that $\bar{L}$ of (52) satisfies a form of (alternating) measure preservation, namely

$$
\begin{equation*}
\operatorname{det} \mathrm{d} \bar{L}=\frac{\partial x_{n+3}}{\partial x_{n}}=\frac{\ell\left(x_{n}, x_{n+1}, x_{n+2}\right)}{\tilde{\ell( }\left(x_{n+1}, x_{n+2}, x_{n+3}\right)}, \tag{62}
\end{equation*}
$$

where the density $\ell$ is
$\ell\left(x_{n}, x_{n+1}, x_{n+2}\right)=\left(x_{n} x_{n+1} x_{n+2}\right)^{-1}\left|\begin{array}{ll}I_{11} & I_{12} \\ I_{21} & I_{22}\end{array}\right|^{-1}=\frac{\left(x_{n} x_{n+1} x_{n+2}\right)^{-1}}{x_{n}^{2} \cdot\left(M_{2}^{1,2} x_{n+1}^{2}+M_{1}^{1,2} x_{n+1}+M_{0}^{1,2}\right) x_{n+2}^{2}}$.
In (62), $\tilde{\ell}$ again refers to the exchange $\alpha^{j} \leftrightarrow \beta^{j}$ and the result represents a generalization of theorem 1 of [19], noting that $\left(x_{n} x_{n+1} x_{n+2}\right)^{-1}$ is the density of $L$ of (1) and $\bar{L}$ arises from $L$ by the interchange of parameters and 2 -integrals. The composition of $\bar{L}$ with its upshift, i.e. $\bar{L} \circ \bar{L}$, is no longer alternating and is measure preserving in the usual sense, with density $\ell$. When we take $\alpha^{j}=\beta^{j}, \bar{L}$ itself ceases to be alternating and is also measure preserving with the corresponding density $\ell$.

## 4. Concluding remarks

We conclude with the following remarks.

- The maps $L$ of (1), $L_{1}$ of (20) and $L_{2}$ of (22) are all contained as special cases of the general map $\bar{L}$ of (52). In general, $\bar{L}$ is an alternating map but when we choose $\alpha^{j}=\beta^{j}$, it becomes non-alternating.
- The determinantal structure of $\bar{L}$ and $k_{1}$ and $k_{2}$ of (42) and the fractional-linear form of $\bar{L}$ have analogues in the symmetric QRT map in two dimensions [21] when it is obtained from the McMillan map via reparametrization and interchange [10].

This letter highlights the importance and usefulness of several recent developments in discrete integrable systems: 2-integrals [5], interchange of parameters and integrals [19] and alternating maps [15].

## Acknowledgments

This research has been funded by the Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems and by the Australian Mathematical Sciences Institute. We are grateful to Danesh Jogia for computational assistance.

## References

[1] Bellon M P, Maillard J-M and Viallet C-M 1991 Higher-dimensional mappings Phys. Lett. A 159 233-44
[2] Capel H W and Sahadevan R 2001 A new family of four dimensional symplectic and integrable mappings Physica A 289 86-106
[3] Graham A 1981 Kronecker Products and Matrix Calculus with Applications (New York: Wiley)
[4] Grammaticos B, Nijhoff F W and Ramani A 1999 Discrete Painleve equations The Painleve Property: One Century Later ed R Conte (New York: Springer) pp 413-516
[5] Haggar F, Byrnes G B, Quispel G R W and Capel H W $1996 k$-integrals and $k$-Lie symmetries in discrete dynamical systems Physica A 233 379-94
[6] Hirota R, Kimura K and Yahagi H 2001 How to find the conserved quantities of nonlinear discrete equations J. Phys. A: Math. Gen. 34 10377-86
[7] Hirota R and Yahagi H 2002 'Recurrence equations', an integrable system J. Phys. Soc. Japan 71 2867-72
[8] Iatrou A 2003 Three dimensional integrable mappings Preprint nlin.SI/0306052
[9] Iatrou A 2003 Higher dimensional integrable mappings Physica D 179 229-53
[10] Iatrou A and Roberts J A G 2002 Integrable mappings of the plane preserving biquadratic invariant curves II Nonlinearity 15 459-89
[11] Lyness R C 1945 Note 1847 Math. Gaz. 29 231-3
[12] Matsukidaira J and Takahashi D 2006 Third-order integrable difference equations generated by a pair of secondorder equations J. Phys. A: Math. Gen. 39 1151-61
[13] McMillan E M 1971 A problem in the stability of periodic systems Topics in Modern Physics. A Tribute to E. U. Condon ed E Britton and H Odabasi (Boulder, CO: Colorado University Press) pp 219-244
[14] Papageorgiou V G, Nijhoff F W and Capel H W 1990 Integrable mappings and nonlinear integrable lattice equations Phys. Lett. 147A 106-14
[15] Quispel G R W 2003 An alternating integrable map whose square is the QRT map Phys. Lett. A 307 50-4
[16] Quispel G R W, Capel H W, Papageorgiou V G and Nijhoff F W 1991 Integrable mappings derived from soliton equations Physica 173A 243-66
[17] Quispel G R W, Roberts J A G and Thompson C J 1988 Integrable mappings and soliton equations Phys. Lett. 126A 419-21
[18] Quispel G R W, Roberts J A G and Thompson C J 1989 Integrable mappings and soliton equations II Physica D 34 183-92
[19] Roberts J A G, Iatrou A and Quispel G R W 2002 Interchanging parameters and integrals in discrete dynamical systems J. Phys. A: Math. Gen. 35 2309-25
[20] Roberts J A G and Quispel G R W 1992 Chaos and time-reversal symmetry—order and chaos in reversible dynamical systems Phys. Rep. 216 63-177
[21] Roberts J A G and Quispel G R W 2007 in preparation
[22] Tuwankotta J M, Quispel G R W and Tamizhmani K M 2004 Dynamics and bifurcations of a three-dimensional piecewise-linear integrable map J. Phys. A: Math Gen. 37 12041-58
[23] Veselov A P 1991 Integrable maps Russ. Math. Surv. 46 1-51


[^0]:    ${ }^{4}$ In [6], $L$ is equation (Y1) of the appendix. We are grateful to Professor R Hirota and his collaborators for providing us with $H_{1}$ and $H_{2}$. During the final preparation of our manuscript, [12] appeared in which the 2-integrals $I_{1}$ and $I_{2}$ for (Y1) are also found, as are the 2-integrals for other integrable cases of [6]. This allows the authors of [12] to give certain reductions of the third-order equations of [6] to pairs of second-order equations.

[^1]:    5 The negative sign is introduced simply for aesthetic reasons.

[^2]:    ${ }^{6}$ One sees that e.g. $\alpha^{0}$ and $I_{1}^{0}$ now play the role of $\alpha(n)$ and $\tilde{I}_{1}(n)$, respectively, in (12).

[^3]:    ${ }^{8}$ The rigorous justification for the validity of such operations can be inferred from properties of the Kronecker product $\otimes$.

